Functional verification and screening of protein interacting with the slPHB3

GuanRong Li<sup>1</sup>, Shengxuan Jin<sup>1</sup>, Xiaolu Wang<sup>1</sup>, Xu Chang<sup>1</sup> and Shumei Jin<sup>1\*</sup>

<sup>1</sup>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.

\*Correspondence Shumei Jin, E-mail: jinshumei1972@163.com Tel: 86-18846778856

### Acknowledgment

This work was supported by the Heilongjiang Province Nature Science Foundation (LH2019C011) and D TYPE of Fundamental Research Funds for the Central Universities(2572020DY18)

#### 1 Abstract

slPHB3 was cloned from *Salix linearistipularis* and mainly expressed in root. The transgenic tobacco was treated with different concentrations of NaCl, NaHCO<sub>3</sub> and H<sub>2</sub>O<sub>2</sub>, seed germination rate, root length and fresh weigh of transformic tobacco were measured, the results showed that transgenic tobacco was more tolerant to salt, alkali and oxidation than wild-type tobacco. In order to further investigate the molecular mechanism of this gene in *Salix linearistipularis*, we identified
24 proteins interacting with slPHB3 by yeast two-hybrid technique. The
study of *slPHB3* under abiotic stress can improve our understanding of *PHB3* gene function.

12 Key words: Salix linearistipularis, PHB3, salt, yeast two-hybrid

# 13 Introduction

Salix linearistipularis (syn. S. mongolica) habitats Inner-Mongolia,
Heilongjiang, Jilin, Liaoning, Mongolia and (Far-East) Russia. Salix *linearistipularis* is a woody plant that is found in Songnen plain,
Heilongjiang, China (Ishida et al., 2009) . Salix *linearistipularis* is a
dominant species resistant to saline and plays an important role in
maintaining ecological balance and in improving saline soil (Nan et al.,
2016).

PHB was first discovered as a tumor suppressor gene in mammalian 21 cells(Jk et. al., 1989).PHB genes are conserved during evolution (Di et al., 22 2010; Thuaud et al., 2013). and regulate membrane protein degradation, 23 control cell proliferation and apoptosis (C. Merkwirth et al., 2008; 24 Carsten Merkwirth & Langer, 2009). PHB3 induced by auxin and shows 25 elevated expression in pericycle cells that give rise to lateral roots(Wang 26 et al.2010). PHB3 knockout mutants show severe growth defects and 27 have decreased cell division and expansion in the root apex(Wang et al., 28

2010). PHB3 impacts SA accumulation and is found 29 in chloroplasts(Seguel et al., 2018). PHB3 is also present in mitochondria 30 and nuclei, PHB3 regulates stem cell niche maintenance and cell 31 proliferation during root development in Arabidopsis (Huang et al., 2019). 32 *PHB3* is essential to maintain root quiescent center (Kong et al., 2018). 33 The *atPHB3* KO plants had obvious developmental phenotypes with 34 severe growth retardation throughout their development. Germination of 35 atPHB3 KO seeds was delayed by 1-2 days compared with wild-type 36 (Van Aken et al., 2007). It can be seen that the study of PHB3 protein is 37 very valuable and significant. 38

In this study, *slPHB3* was cloned from *Salix linearistipularis* and 39 40 transferred into tobacco genome. Physiological index analysis of transgenic tobacco and wild-type tobacco showed that transgenic tobacco 41 plants had stronger salt tolerance, alkaline tolerance, and oxidation 42 resistance than wild-type tobacco. Yeast two-hybrid assay was carried out 43 to further explore the interaction protein with slPHB, there were 24 44 positive clones, among which 17 genes were successfully compared, the 45 rest were unnamed genes and duplicated genes. *slPHB3* enhanced the 46 stress resistance of tobacco plants and provided a basis for the study of 47 PHB3 introduction in other valuable plants. 48

#### 49 **Result**

#### 50 **Bioinformatics analysis**

The amino acid sequence of the gene cloned from *Salix linearistipularis* and PHB3 protein of other plants was compared by DNAMan software. The amino acid sequence of slPHB3 has a high degree similarity with the amino acid sequence of PHB3 of other plants(Fig. 1). Therefore, the cDNA cloned from *Salix linearistipularis* is named as *slPHB3*.

In order to explore the amino acid sequence homology between slPHB3 and other plant PHB3, we constructed a phylogenetic tree(Fig. 2), which showed that slPHB3 is closely related to *PHB3* from Populus trichocarpa, Populus euphratica, and Populus alba.

### 61 Expression of *slPHB3* in *Salix linearistipularis* under abiotic stresses

The *slPHB3* expression level increased until the highest level at 24 h and then decreased gradually under 3 mM  $H_2O_2$  and 5mM NaHCO<sub>3</sub> stress (Fig. 3A).The *slPHB3* expression level showed its highest value at 12 h under 125 mM NaCl stress (Fig. 3B and C). That means that the stresses influenced the *slPHB3* gene expression level in *Salix linearistipularis* leaves.

### 68 Expression of *slPHB3* gene in transgenic yeast in response to stresses

69 Transgenic yeast cells growth different under various abiotic stresses 70 were studied (Fig. 4). The *slPHB3*-transgenic lines grew better in the

presence of 1 mM NaCl, 24 mM NaHCO<sub>3</sub> or  $3.2 \text{ mM H}_2\text{O}_2$  than the control.

### 73 Stress tolerance of the transgenic tabacco

The plants grew well in the medium without stress. the transgenic plants severely lost water and wilted than wild-type after stress treatment (Fig. 5).

### 77 Screening of *slPHB3* interacting protein by Yeast two-hybrid

The total of 24 positive gene were obtained from colonies grown on
SD/-Trp-Leu-His-Ade+X-α-gal+AbA solid medium turned blue. BLAST
these colonies in NCBI, 17 genes were successfully compared (table 1)

function of P-loop containing nucleoside triphosphate The 81 82 hydrolases is related to temperature changes(Zhao L et al, 2019). The function of glycosyl hydrolase family is related to glycosylation (Kotik, 83 M et al., 2020). The glycosyl hydrolase 18 (GH18) and GH19 families 84 are also related to low temperature stress and osmotic stres (Chen J et al., 85 2018), ATP-dependent protease La is involved in the degradation of 86 abnormally folded proteins and specific regulatory proteins, and regulates 87 protein stability (NAMK A et al., 2020; Tsitsekian D et al., 2019). Lack of 88 Lon hydrolyzed protein causes plant growth retardation and impaired 89 seedling production (Rigas S et al., 2012). The ATP Synthase subunit 90 Beta family is involved in REDOX reactions, mediates protein 91

92 interactions, and is associated with cold stress (Yang Jh et al.,2020;Zhang

| 93 | Z et al.,2017). Proteome analysis of Date Palm showed that the    | α | and | ß |
|----|-------------------------------------------------------------------|---|-----|---|
| )5 | 2 et al.,2017). I foteonie analysis of Date I and showed that the | ~ | und | ~ |

subunits of ATP synthase changed significantly under salt stress and 94 drought stress (EI Rha et al., 2015). Alpha/beta-hydrolases superfamily 95 functions to catalyze the hydrolysis of ester bonds between fatty acids 96 and glycerol (Xinyi, Zan et al., 2019) .It was involved in delaying the 97 senescence of strawberry fruit at low temperature (B XXa et al., 2015). 98 HSP family functions are related to temperature changes (Li G et 99 al.,2020). However, under NaCl stress, the root-cap length of OSHSP40 100 transgenic seedlings was significantly shorter than that of wild-type 101 seedlings. The results showed that HSP40 was related to salt stress (Wang 102 The TIFY family may play crucial and divergent roles in X et al.,2018). 103 phytohormone crosstalk and plant defense (Liu, X et al., 2020). The 104 TIFY gene responds to abiotic stresses such as jasmonic acid (JA) and 105 salt and drought (Yang, YX et al., 2019) .Glycine decarboxyla plays a 106 major role in photorespiration. Glycine decarboxylase and other proteins 107 increase CO<sub>2</sub> assimilation, vegetative biomass, and seed yield in 108 Arabidopsis thaliana.AtGLDP1 is involved in the transition of C-3 109 through C-2 to C4 photosynthesis (Adwy W et al., 2015). Non-intrinsic 110 ABC protein family functions are related to accumulation of metal ions 111 and stability of chloroplast structure (Einav et al., 2010). ATNAP7 is an 112

essential ATP binding site for Arabidopsis embryo development (Xu XM 113 et al.,2004). PAO family functions play a major role in PA catabolism. 114 ScPAO5 is highly responsive to drought stress, while ScPAO1 and 115 CspAO2 are sensitive to changes in nitrogen nutrition (Li M et 116 al.,2020). The transcription level of PaO4 in tomato leaves increased in 117 response to heat stress and cold stress (Upadhyay R K et al., 2020). 118 ABCB4 is a substrate activation regulator of auxin level (Pan Y et 119 al.,2020). Some NAC genes have been identified as candidates for 120 breeding programmes to improve drought resistance in crops (Sepideh et 121 al.,2020). In maize, 13 SNAC transcripts in the SNAC subfamily were 122 responsive to drought stress, and almost all of them in roots and 11 in 123 leaves were upregulated under drought stress (Li L et al., 2015). Salt, 124 osmotic stress and hormone treatment strongly induced the expression of 125 Atsot12 gene (Baek D et al., 2010). Tom3 is thought to have a specific 126 in of plant iron carriers(Nozoye, role the transport Т et 127 al.,2015).Proline-rich nuclear receptor coactivator 128 participatescoregulatory protein that modulates transcriptional activation 129 of multiple nuclear receptors(Zhou, D et al., 2000). 130

# 131 Materials and Methods

#### 132 Cloning and bioinformatics analysis of *slPHB3* gene

cDNA was extracted from *Salix linearistipularis*. The forward *slPHB3F* and reverse primer *slPHB3*R (Supplementary table S1) were designed according to the *Salix linearistipularis* transcriptome data. The PCR products were ligated to pMD18-T vector (Takara, Tokyo, Japan) and sequenced. The homologous amino acid sequence of *slPHB3* protein were compared by DNAMAN software, and the phylogenetic tree was constructed by MEGA7.

#### 140 Real-time quantitative PCR (RT-qPCR) analysis for *slPHB3*

# 141 expression

*Salix linearistipularis* seeds were sown onto 1/2 MS medium. The
seedlings of one-month age were exposed to 3 mM H<sub>2</sub>O<sub>2</sub>, 150 mM NaCl
and 5 mM NaHCO<sub>3</sub> treatments for 0, 6, 12, 24, 36 or 72 h, respectively.
The *slPHB3* expression in leaves under treatments was examined by
RT-qPCR analysis, forward and reverse primers in Supplementary table 1.
All tests were repeated in triplicate.

#### 148

# Construction of expression vectors and yeast transformation

The coding region of the *slPHB3* gene was PCR amplifified with *Bam*HI sense primer 5'-GGATCCATG-3' and *Xho*I antisense primer 5'-CTCGAGTTA-3'. The PCR amplifified fragments were digested with BamHI and XhoII and then subcloned to the same site of the pYES2 expression vector (Clontech, Tokyo, Japan) resulting in pYES2-*slPHB3*. Then transformed into the competent yeast strain INVSc1 (S. cerevisiae) (Clontech) for protein expression in Yeast.Transgenic yeast cells ( $OD_{600} = 0.5$ ).containing pYES2-*slPHB3* and pYES<sub>2</sub> (control) with serial dilutions (10, 10<sup>-1</sup>, 10<sup>-2</sup>, 10<sup>-3</sup> and 10<sup>-4</sup>) were spotted onto YPD agar plates supplemented with 1 M NaCl, 24 mM NaHCO<sub>3</sub> or 3.2 mM H<sub>2</sub>O<sub>2</sub>, respectively

# 160 Acquisition of *slPHB3* overexpressed tobacco transgenic lines

The *slPHB3* gene PCR amplified fragment with added with BamHI 161 and XhoI restriction enzymes was obtained by slPHB3BamHI-F and 162 reverse primer *slPHB3*XhoI-R (Supplement table1) and ligased into 163 pBI121 vector plasmid, The plasmid DNAs of pBI121-slPHB3 was 164 transformed into the Agrobacterium tumefaciens strain EHA105 (Takara, 165 Tokyo, Japan), and the *tabacco* was infected. The independent transgenic 166 lines were obtained and verified the expression of *slPHB3* by RT-qPCR, 167 all temples were tested in triplicate, then used for further analyses. 168

Wild type and transgenic seed were planted to pots containing nutrient-rich soil. After grow up for two months, the pots were irrigated with 50 mL solution of 300 mm NaCl, 300 mm NaHCO<sub>3</sub> or  $1.5 \text{ M H}_2\text{O}_2 \text{ 3}$ times every 4 days. The pots were covered with a breathable plastic cover to minimize evaporation and keep the concentration of the solution from changing too much. Images of the plants were taken after 12 days oftreatment.

## 176 Screening of *slPHB3* interacting protein by Yeast two-hybrid

slPHB3 was cloned into pGADT7 vector, and pGADT7-slPHB3 was 177 co-transformed into Y<sub>2</sub>HGold. After the recombinant plasmids 178 pGADT7-slPHB3 were identified by double enzyme digestion, they were 179 transformed into Y<sub>2</sub>HGold strain, and then the proteins interacting with 180 pGADT7-slPHB3 were screened from cDNA library. Yeast DNA was 181 extracted and sequenced to obtain the interaction gene and protein 182 sequences. 183

#### 184 **Discussion**

Plants have developed specific mechanisms that allow them to detect 185 precise environmental changes and respond to complex stress 186 conditions(Atkinson and P E., 2012). Methylobacterium has better 187 survival ability under osmotic stress, which is related to the accumulation 188 of PHB in the strain(Woo et al., 2012). In Arabidopsis thaliana, PHB3 189 coordinates cell division and differentiation in root tip meristems by 190 restricting the ethylene reactive factor (ERF) transcription factor (Kong et 191 al.,2018). An important number of different ROS, including the 192 superoxide anion  $(O_2^-)$  and hydrogen peroxide  $(H_2O_2)$  are produced under 193 the stresses (Jubany-Marí et al., 2010). Upon PHB3 loss-of-function, the 194

ROS contents will be out of homeostasis(Huang et al., 2019). Compared to WT, both peroxide ( $H_2O_2$ ) and superoxide ( $O_2^-$ ) were overaccumulated in the *PHB3* mutant root meristem(Kong et al.,2018). A *slPHB3* gene was cloned from *Salix linearistipularis*, the *slPHB3* expression level increased under 3 mM H<sub>2</sub>O<sub>2</sub>, 125 mM NaCl and 5mM NaHCO<sub>3</sub> stress (Fig. 3). This means the stresses influenced the *slPHB3* gene expression level in *Salix linearistipularis* leaves. *slPHB3* may relate to the stresses.

In the yeast resistance analysis, the growth of the transgenic strain was better than that of the wild type under 1 mM NaCl, 24 mM NaHCO<sub>3</sub> or  $3.2 \text{ mM H}_2\text{O}_2$  medium treatment, indicating that *PHB3* gene expression added resistant to stress.

Transgenic to *PHB3* plants showed higher fresh weight under 5mmnahco3 stress. After 2 d of 50 and 100 mM NaCl, the growth of wildtype roots was reduced by 45 and 69%, respectively, whereas root growth was reduced by only 33 and 46% in the mutant (Wang et al., 2010). the function of *PHB3* in root growth under H2O2 treatment may be different from that under NaCl treatment(Wang et al., 2010).

The wild-type and *lpPHB3* transgenic lines grew well in medium without stress. Under stress induced by 300 mM NaCl, 300 mM NaHCO<sub>3</sub> or 2 M  $H_2O_2$ , the wild-type plants died, while the transgenic plants survived; *lpPHB3* transgenic tobacco plants grew well in the medium

without stress (Fig. 2D). The results showed that *slPHB3* transgenic
tobacco had stronger resistance to stresses than wild-type tobacco.

PHB3 also interacts with a variety of other proteins. In mitochondria, 218 PHB3 forms complexes with other PHB proteins(Van Aken et al., 2016), 219 The formation of the atPHB3-ICS1 complex stabilizes ICS1 to promote 220 SA production(Seguel et al.,2018). In this reseach, 24 positive clones 221 were obtained (Table 3), Among them, 17 sequences were successfully 222 matched.P-loop containing nucleoside triphosphate hydrolases,HSP, and 223 PAO4 are related to temperature stress. ATP synthase subunit beta is 224 related to cold stress and oxidative stress. ATP synthase epsilon chain, 225 TIF7, SOT12 are related to salt stress, and NAC13 is related to drought 226 227 stress.

Expression analysis and phenotype analysis showed that *slPHB3* enhanced tobacco resistance to abiotic stress. The results of yeast resistance analysis and yeast heterozygosity showed that Slphb3 was related to abiotic stress but co-chip assay is needed To determine whether PHB3 interacts with these proteins in cells In order to determine the location of protein interactions, subcellular localization experiments should be performed.

### 235 Conclusion

The comparison of physiological indexes between *slPHB3* transgenic tobacco and wild-type tobacco showed that the transgenic plants had higher salt tolerance, alkaline tolerance and oxidation resistance than the wild-type plants. Through the screening of slPHB3 interaction proteins, 10 of the 17 genes were related to abiotic stress, indicating that *PHB3* gene plays a role in plant stress resistance.

# Table1. Results of slPHB3 yeast two-hybrid

| Gene family |                                           |  |  |  |
|-------------|-------------------------------------------|--|--|--|
| 1           | P-loop containing nucleoside triphosphate |  |  |  |
| 2           | hydrolases glycosyl hydrolase             |  |  |  |
| 3           | ATP-dependent protease La                 |  |  |  |
| 4           | ATP synthase subunit beta                 |  |  |  |

| 5  | ATP synthase epsilon chain                            |
|----|-------------------------------------------------------|
| 6  | alpha/beta-Hydrolases superfamily                     |
| 7  | DNAJ heat shock family protein                        |
| 8  | TIFY domain/Divergent                                 |
| 9  | glycine decarboxyla                                   |
| 10 | non-intrinsic ABC protein                             |
| 11 | polyamine oxidase                                     |
| 12 | ARABIDOPSIS P-GLYCOPROTEIN                            |
| 13 | Acyl-CoA N-acyltransferases (NAT) superfamily protein |
| 15 | NAC domain protein                                    |
| 16 | SOT                                                   |
| 17 | ТОМ                                                   |
| 18 | Proline-rich nuclear receptor coactivator             |

# 243 Figure Legends



Fig1. Alignment of the slPHB3 deduced amino acid sequence with PHB3 proteins from other plant species. The amino acid sequence of the transcript is similar to that of CsPHB3 Protein, PtPHB3 Protein (XP\_002323792.1), PePHB3 Protein (XP\_011045196.1), PaPHB3 protein (TKR74705.1), HbPHB3 Protein (XP\_021677719.1), RcPHB3 Protein(XP\_002509571.1)



0.0100

Fig.2 *slPHB3* evolutionary tree analysis. The MEGA7 program was used for the construction of phylogenetic trees. Bar represents 0.1 amino acid substitutions per site.



Fig3. Real-time quantitative PCR analysis for *slPHB3* expression in *Salix linearistipularis* under different stresses. (A): Relative expression of *slPHB3* at different time under 3mM H<sub>2</sub>O<sub>2</sub> stress; (B): Relative
expression of *slPHB3* at different time under 125mM NaCl stress; (C):
Relative expression of *slPHB3* at different time under 5mM NaHCO<sub>3</sub>
stress.



- 259 Fig4. Growth of *slPHB3* transgenic yeast cells under salt stress. Ten-fold
- dilutions of yeast cells containing pYES2 (upper line) and
- 261 pYES2-*slPHB3* vector (lower line) were spotted onto solid YPG media
- supplemented with the indicated stresses. No treatment is a control (CK).



300mM NaCL

300mM NaHCO<sub>3</sub>

Fig5 The relative stress tolerance of wild-type and transgenic plants (2,
# 3, # 4) in reproduction stage was studied. The plants grown on the
soil with 1.5 M H<sub>2</sub>O<sub>2</sub>, 300 mM NaCl or 300mM NaHCO<sub>3</sub> or without
(CK).

### References

- Adwy W, Laxa M, Peterhansel C. (2015). A simple mechanism for the establishment of C2-specific gene expression in Brassicaceae., Plant J,84(6), 1231-1238.https://doi.org/10.1111/tpj.13084
- Atkinson NJ and Jain R, Urwin PE (2012). "The interaction of plant biotic and abiotic stresses: from genes to the field."J. Exp. Bot,63(10): 3523-3543.https://doi.org/10.1093/jxb/ers100
- BAEK DQ, PATHANGE P CHUN JS(2010). A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in arabidopsis. Plant Cell Environ, 33(8).https://doi.org/10.1111/j.1365-3040.2010.02156.

- BAEK D, PATHANGE P, CHUNG J.-S, JIANG J, GAO L, OIKAWA A, HIRAI MY, SAITO K, PARE PW and SHI H. (2010), A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis.Plant Cell Environ, 33: 1383-1392. https://doi.org/10.1111/j.1365-3040.2010.02156.x
- B XXA, B XM, B HL, B LY, A XS, & B HSA. (2015). Micrornas play an important role in the regulation of strawberry fruit senescence in low temperature. POSTHARVEST BIOL TEC, 108, 39-47.https://doi.org/10.1016/j.postharvbio.2015.05.006
- Chen J, Piao Y, Liu Y, Li X, & Piao Z. (2018). Genome-wide identification and expression analysis of chitinase gene family in brassica rapa reveals its role in clubroot resistance. PLANT SCI, 257-267.https://doi.org/10.1016/j.plantsci.2018.02.017
- Chen S, Zhu GQ, He H, Li GL, Ren ZQ, Xu Y, Xu C, Jin SM (2020)A
  Prohibitin Family Gene (Lp*PHB3*) Enhances Salt and Oxidative
  Stress Tolerance when Overexpressed in Lilium pumilum. Int. J.
  Agric. Biol. 24, 43–50 .
- Di C, Xu W, Su Z , Yuan JS.(2010). Comparative genome analysis of
  PHB gene family reveals deep evolutionary origins and diverse
  gene function. *BMC Bioinformatics*, *11*(S6), S22.
  https://doi.org/10.1186/1471-2105-11-S6-S22

El RHA, Al-Malki AL, Abulnaja K O, & Wolfgang R. (2015). 275 Proteome analysis for understanding abiotic 276 stress (salinity and drought) tolerance in date palm (phoenix 277 dactylifera 1.). Int Genomics, 2015, (2015-6-18), J 2015. 278 407165.10.1155/2015/407165 279

EINAV, SHIMONI-SHOR, MIRIAM, HASSIDIM, NAOMI, 280 et al. (2010). YUVAL-NAEH, Disruption of nap14, 281 а plastid-localized non-intrinsic abc protein in arabidopsis thaliana 282 results in the over-accumulation of transition metals and in 283 aberrant chloroplast structures.Plant Cell 284 Environ .https://doi.org/10.1111/j.1365-3040.2010.02124.x 285

Zhang S. (2019). The arabidopsis PHB3 is a Huang R, Yang C, 286 pleiotropic regulator for plant development. Plant Signal. Behav 287 14(11), 1-5.https://doi.org/10.1080/15592324.2019.1656036 288 Huang R, Shu S, Liu M, Wang C, Jiang B, Jiang J, Yang C, Zhang S. 289 (2019). Nuclear Prohibitin3 Maintains Genome Integrity and Cell 290 Proliferation in the Root Meristem through Minichromosome 291 Maintenance 2. PLANT PHYSIOL, 179(4), 1669–1691. 292 https://doi.org/10.1104/pp.18.01463 293

Ishida T, Nara K, Ma S, Takano T, & Liu S. (2009). Ectomycorrhizal
 fungal community in alkaline-saline soil in Northeastern China.

| 296 | <i>Mycorrhiza</i> , <i>19</i> , 329–335.                                 |
|-----|--------------------------------------------------------------------------|
| 297 | https://doi.org/10.1007/s00572-008-0219-9                                |
| 298 | Jk M, Db D, Da S, Jr S, El S, Ck L, Rt D, Mj N. (1989). Isolation of a   |
| 299 | cDNA that hybrid selects antiproliferative mRNA from rat liver.          |
| 300 | BBRC, <i>164</i> (3), 1316–1322.                                         |
| 301 | https://doi.org/10.1016/0006-291x(89)91813-5                             |
| 302 | Kong X, Tian H, Yu Q, Zhang F, Wang R, Gao S, Xu W, Liu J, Shani, E,     |
| 303 | Fu C, Zhou G, Zhang L, Zhang X, Ding Z. (2018). PHB3                     |
| 304 | Maintains Root Stem Cell Niche Identity through ROS-Responsive           |
| 305 | AP2/ERF Transcription Factors in Arabidopsis. ,CELL REP 22(5),           |
| 306 | 1350–1363. https://doi.org/10.1016/j.celrep.2017.12.105                  |
| 307 | Kotik M , Brodsky K, Halada P, Hana Javrková, Helena Pelantová,          |
| 308 | Dorota Konvalinková, Pavla Bojarová, Vladimír Křen. (2020).              |
| 309 | Access to both anomers of rutinosyl azide using wild-type                |
| 310 | rutinosidase and its catalytic nucleophile mutant. Catal Commun,         |
| 311 | 149:106193 https://doi.org/149.10.1016/j.catcom.2020.106193              |
| 312 | Kumaran NAM , Karthik M, Kumar V ,Jebasingh T ,Munavar M H ,             |
| 313 | (2016). Two new mutations in dnaj, suppress dna damage                   |
| 314 | hypersensitivity and capsule overproduction phenotypes of $\Delta lon$ , |
| 315 | mutant of escherichia coli, by modulating the expression of clpyq,       |
| 316 | ( hsluv ) and rcsa, genes. Gene, 726:                                    |
| 317 | 144135,.https://doi.org/10.1016/j.gene.2019.144135                       |

| 318 | Li G, Zhao H, Guo H, Wang Y, Guo X. (2020). Analyses of the        |
|-----|--------------------------------------------------------------------|
| 319 | function of dnaj family proteins reveal an underlying regulatory   |
| 320 | mechanism of heat tolerance in honeybee. Sci. Total Environ, 716:  |
| 321 | 0048-9697.https://doi.org/137036.10.1016/j.scitotenv.2020.13703    |
| 322 | 6                                                                  |
| 323 | Li L, Ma Y, Zhang S , Hao Z , Li X. (2015). Zea mays NAC           |
| 324 | transcription factor family members: their genomic characteristics |
| 325 | and relationship with drought stress.Research Journal of           |
| 326 | Biotechnology,                                                     |
| 327 | Li M, Lu J, Tao M, Li M, Wan X. (2020). Genome-wide identification |
| 328 | of seven polyamine oxidase genes in camellia sinensis (l.) and     |
| 329 | their expression patterns under various abiotic stresses.Front.    |
| 330 | Plant Sci,                                                         |
| 331 | 11:544933.https://doi.org/544933.10.3389/fpls.2020.544933          |
| 332 | Liu X, Zhao C, Yang L, Zhang Y, Wang Y, Fang Z, Lv H. (2020).      |
| 333 | Genome-Wide Identification, Expression Profile of the TIFY         |
| 334 | Gene Family in Brassica oleracea var. capitata, and Their          |
| 335 | Divergent Response to Various Pathogen Infections and              |
| 336 | Phytohormone Treatments. Genes, 11(2), 127. MDPI AG.               |
| 337 | Retrieved from http://dx.doi.org/10.3390/genes11020127             |
| 338 | McClung JK, Danner DB, Stewart DA, Smith JR, Schneider EL,         |
| 339 | Lumpkin CK, Dell'Orco RT. and Nuell M. (1989) Isolationof a        |
|     |                                                                    |

| 340 | cDNA that hybrid selects antiproliferative mRNA from rat liver.      |
|-----|----------------------------------------------------------------------|
| 341 | Biochem. Biophys. Res. Commun. 164,                                  |
| 342 | 1316-132.https://doi.org/10.1016/0006-291X(89)91813-5                |
| 343 | Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich  |
| 344 | FT, von Kleist-Retzow J-C, Waisman A, Westermann B, Langer T.        |
| 345 | (2008). Prohibitins control cell proliferation and apoptosis by      |
| 346 | regulating OPA1-dependent cristae morphogenesis in                   |
| 347 | mitochondria.Genes Dev. 22(4), 476–488.                              |
| 348 | https://doi.org/10.1101/gad.460708                                   |
| 349 | Merkwirth Carsten, Langer T. (2009). Prohibitin function within      |
| 350 | mitochondria: Essential roles for cell proliferation and cristae     |
| 351 | morphogenesis. BBA-MOL CELL RES, 1793(1), 27–32.                     |
| 352 | https://doi.org/10.1016/j.bbamcr.2008.05.013                         |
| 353 | Nan G, Zhang Y, Li S, Lee I, Takano T, Liu S. (2016). NaCl           |
| 354 | stress-induced transcriptomics analysis of Salix linearistipularis   |
| 355 | (syn. Salix mongolica). BIOL RES-THESSALON 23(1), 1.                 |
| 356 | https://doi.org/10.1186/s40709-016-0038-7                            |
| 357 | Nozoye T, Nagasaka S, Kobayashi T, Sato Y, Uozumi N., Nakanishi, H., |
| 358 | Nishizawa, N. K. (2015). The Phytosiderophore Efflux                 |
| 359 | Transporter TOM2 Is Involved in Metal Transport in Rice. J Biol      |
| 360 | Chem, 290(46), 27688–27699.                                          |
| 361 | https://doi.org/10.1074/jbc.M114.635193                              |

| 362 | Pan Y, Zeng X, Wen, S, Gao X., Liu X, Tian, F, Shang Q. (2020).       |
|-----|-----------------------------------------------------------------------|
| 363 | Multiple ATP-binding cassette transporters genes are involved in      |
| 364 | thiamethoxam resistance in Aphis gossypii glover. Pestic Biochem      |
| 365 | Physiol, 167,                                                         |
| 366 | 104558.https://doi.org/10.1016/j.pestbp.2020.104558                   |
| 367 | Seguel A, Jelenska J, Herrera-Vásquez A, Marr SK, Joyce MB., Gagesch  |
| 368 | KR., Shakoor N, Jiang S-C, Fonseca A, Wildermuth M. C,                |
| 369 | Greenberg JT, Holuigue L. (2018). PROHIBITIN3 Forms                   |
| 370 | Complexes with ISOCHORISMATE SYNTHASE1 to Regulate                    |
| 371 | Stress-Induced Salicylic Acid Biosynthesis in Arabidopsis. PLANT      |
| 372 | PHYSIO, 176(3), 2515–2531. https://doi.org/10.1104/pp.17.00941        |
| 373 | Sepideh, Sanjari, Reza, Shirzadian-Khorramabad, Zahra-Sadat, Shobbar, |
| 374 | et al. (2019). Systematic analysis of nac transcription factors' gene |
| 375 | family and identification of post-flowering drought stress            |
| 376 | responsive members in sorghum. PLANT CELL REP .38,                    |
| 377 | 361-376.https://doi.org/10.1007/s00299-019-02371-8                    |
| 378 | Shen J , Zou Z , Xing H , Duan Y, Fang, W. (2020). Genome-wide        |
| 379 | analysis reveals stress and hormone responsive patterns of jaz        |
| 380 | family genes in camellia sinensis. INT J MOL SCI, 21(7),              |
| 381 | 2433.https://doi.org/10.3390/ijms21072433                             |
| 382 | T. Jubany-Marí S, Munné-Bosch, Alegre L. (2010). Redox regulation of  |
| 383 | water stress responses in field-grown plants. role of hydrogen        |

| 384 | peroxide and ascorbate. PLANT PHYSIOL BIOCH, 48(5),                      |
|-----|--------------------------------------------------------------------------|
| 385 | 351-358.https://doi.org/10.1016/j.plaphy.2010.01.021                     |
| 386 | Thuaud F, Ribeiro N, Nebigil CG, Désaubry L. (2013). Prohibitin          |
| 387 | Ligands in Cell Death and Survival: Mode of Action and                   |
| 388 | Therapeutic Potential. CHEM BIOL, 20(3), 316–331.                        |
| 389 | https://doi.org/10.1016/j.chembiol.2013.02.006                           |
| 390 | Tsitsekian D, Daras G, Alatzas A, Templalexis D, Hatzopoulos P, Rigas S. |
| 391 | (2019).Comprehensive analysis of Lon proteases in plants                 |
| 392 | highlights independent gene duplication events. J Exp Bot. 2019          |
| 393 | Apr 12;70(7):2185-2197. https://doi.org/10.1093/jxb/ery440.              |
| 394 | Rigas S , Daras G , Tsitsekian D , Hatzopoulos P . (2012). The           |
| 395 | multifaceted role of lon proteolysis in seedling establishment and       |
| 396 | maintenance of plant organelle function: living from protein             |
| 397 | destruction. Physiol Plant 145(1):215-23,                                |
| 398 | http://dx.doi.org/215-223.10.1111/j.1399-3054.2011.01537.x               |
| 399 | Upadhyay RK, Fatima T, Handa AK, Mattoo AK. (2020). Polyamines           |
| 400 | and Their Biosynthesis/Catabolism Genes Are Differentially               |
| 401 | Modulated in Response to Heat Versus Cold Stress in Tomato               |
| 402 | Leaves (Solanum lycopersicum L.). Cells, 9(8),                           |
| 403 | 1749.http://dx.doi.org/10.3390/cells9081749                              |
| 404 | Van Aken O, Pečenková T, van de Cotte B, De Rycke R, Eeckhout D,         |
| 405 | Fromm H, De Jaeger G, Witters E, Beemster GTS, Inzé D, Van               |

| 406 | Breusegem F. (2007). Mitochondrial type-I prohibitins of            |
|-----|---------------------------------------------------------------------|
| 407 | Arabidopsis thaliana are required for supporting proficient         |
| 408 | meristem development. Plant Jl, 52(5), 850-864.                     |
| 409 | https://doi.org/10.1111/j.1365-313X.2007.03276.x                    |
| 410 | Wang Y, Ries A, Wu K, Yang A, Crawford NM. (2010). The              |
| 411 | Arabidopsis Prohibitin Gene PHB3 Functions in Nitric                |
| 412 | Oxide-Mediated Responses and in Hydrogen Peroxide-Induced           |
| 413 | Nitric Oxide Accumulation. Plant Cell 22(1), 249–259.               |
| 414 | https://doi.org/10.1105/tpc.109.072066                              |
| 415 | Woo SM, Subramanian P, Ramasamy K, Joe MM, Sa TM (2012).            |
| 416 | Eps production, phb accumulation and abiotic stress endurance of    |
| 417 | plant growth promoting methylobacterium strains grown in a high     |
| 418 | carbon concentration. Korean Journal of Soil Science and            |
| 419 | Fertilizer                                                          |
| 420 | 45(4):361-763.https://doi.org/10.7745/KJSSF.2012.45.4.572           |
| 421 | Wu H, Ye H, Yao R, Zhang T, Xiong L . (2015). Osjaz9 acts as a      |
| 422 | transcriptional regulator in jasmonate signaling and modulates salt |
| 423 | stress tolerance in rice. Plant Sci,                                |
| 424 | 232:1-12.https://doi.org/10.1016/j.plantsci.2014.12.010             |
| 425 | Wang X., Zhang H., Shao LY., Yan X, Peng H., Ouyang JX, et al.      |
| 426 | (2018). Expression and function analysis of a rice oshsp40 gene     |
| 427 | under salt stress. GENES GENOM 41(2):175-182.                       |

| 428 | http://dx.doi.org/10.1007/s13258-018-0749-2 |
|-----|---------------------------------------------|
|-----|---------------------------------------------|

| 429 | Xinyi | Zan, Fengjie Cu   | ii, Jianing | Shuai       | Zhou, Y    | uanda Son   | g. (2019).  |
|-----|-------|-------------------|-------------|-------------|------------|-------------|-------------|
| 430 |       | Novel dual-fu     | nctional    | enzyme      | lip10 ca   | talyzes li  | pase and    |
| 431 |       | acyltransferase   | activities  | s in the    | oleagin    | ous fungi   | is mucor    |
| 432 |       | circinelloides.   | J.          | Agric.      | Food       | Chem        | 67(47):     |
| 433 |       | 13176–13184.h     | ttp://dx.do | i.org/1317  | 6-13184.1  | 10.1021/acs | s.jafc.9b0  |
| 434 |       | 5617              |             |             |            |             |             |
| 435 | Xu XI | M., & Moller SG   | . (2004). A | tnap7 is a  | plastidic  | sufc-like a | tp-binding  |
| 436 |       | cassette/atpase   | essential   | for arabid  | opsis em   | bryogenesi  | s.P NATL    |
| 437 |       | ACAD              |             | SCI         |            |             | USA,        |
| 438 |       | 101(24):9143-9    | 148.p.http  | ://dx.doi.o | rg/9143-9  | 148.10.107  | 73/pnas.0   |
| 439 |       | 400799101         |             |             |            |             |             |
| 440 | Yang  | JH , Williams D   | ), Kandiał  | n E , Fron  | nme P., &  | & Chiu PL   | . (2020).   |
| 441 |       | Structural basis  | of redox    | modulatio   | n on chlo  | roplast atp | synthase.   |
| 442 |       | COMMUN            |             | BIO         | L          |             | 3(1):482    |
| 443 |       | http://dx.doi.org | g/482.10.10 | 038/s4200   | 3-020-012  | 221-8       |             |
| 444 | Yang  | Y., Ahammed       | GJ, Wai     | n C, Liu    | 1 H, &     | Zhou Y.     | . (2019).   |
| 445 |       | Comprehensive     | analysis    | of tify tr  | anscriptio | on factors  | and their   |
| 446 |       | expression prot   | files under | r jasmonic  | e acid an  | d abiotic s | stresses in |
| 447 |       | watermelon.Int    |             | J           | Ge         | enomic      | ,           |
| 448 |       | 2019:1-13.http:/  | //dx.doi.or | g/10.1155/  | /2019/681  | 3086        |             |
| 449 | Zhany | ing Zhang, Jinjie | e Li, Yingh | ua Pan, Ji  | long Li, I | Lei zhou, H | longli Shi, |

Yawen Zeng, Haifeng Guo, Shuming Yang, Weiwei Zheng, 450 Jianping Yu, Xingming Sun, Gangling Li, Yanglin Ding, Liang 451 Ma, Shiquan Shen, Luyuan Dai, Hongliang Zhang, Shuhua Yang, 452 Yan Guo Zichao L. (2017). Natural variation in ctb4a enhances 453 cold habitats.Nat 8, rice adaptation to Commun. 454 14788.http://dx.doi.org/10.1038/ncomms14788 455

Zhao L., Vecchi G, Vendruscolo M, Krner R, Hartl FU. (2019). The 456 hsp70 chaperone system stabilizes a thermo-sensitive 457 CELL 458 subproteome in e. coli. REP,28(5):1335-1345, http://dx.doi.org/1335-1345.e6.10.1016/j.celrep.2019.06.081 459

Zhou D, Quach KM, Yang C, Lee SY, Pohajdak B, Chen S. (2000). 460 461 PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors 462 including orphan receptors SF1 (steroidogenic factor 1) and 463 (estrogen related receptor ERRalpha1 alpha-1). Molecular 464 endocrinology (Baltimore, Md.), 14(7), 986–998. 465 https://doi.org/10.1210/mend.14.7.0480 466