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Abstract

The cure fraction model also known as the long-term survival model is used
in fitting data from a population with two different types of individuals: individ-
uals who experienced the event of interest (susceptible) and individuals that will
never experience the event of interest (non-susceptible). The present paper intro-
duced a cure fraction model considering the Weibull exponentiated exponential
distribution that will be used in modelling such type of information. The pa-
rameters of the model were estimated via maximum likelihood procedure (MLE)
under the assumption of right censoring. Furthermore, statistical properties of
the model were studied comprehensively. Simulation study and medical data sets
were used in demonstrating the applicability of the proposed methodology. Bias
and standard error were used as discrimination criteria in the simulation study
while Akaike Information criteria (AIC), Bayesian Information criteria (BIC) and
Consistent Akaike Information criteria (CAIC) were used as discrimination cri-
teria in the real life applications. Results from the applications showed that the
Weibull exponentiated exponential non-mixture cure fraction model is a strong
competitor.

Key words: Survival Analysis, Mixture Cure Fraction Model, Non-Mixture Cure Fraction model,
Weibull Cure Fraction Model, Right censoring.

1 Introduction

Survival analyses are statistical methods for analyzing time-to-event data such as death, heart attack,
device failure and so on. Different researchers have applied different techniques non-parametric meth-
ods (such as Kaplan-Meier estimator or log-rank test), semi-parametric methods (cox proportional
hazard model) or parametric methods (using statistical distribution) to analyze this data (Martinez,
Achcar, Jácome, & Santos, 2013). The Weibull distribution is one of the distributions that is widely
used in this area because of the flexibility of its hazard function and the facility to estimates its
parameters (Peto, Lee, & Paige, 1972). However, data sets in medical research requires more so-
phisticated parametric models (Martinez et al., 2013). To solve this problem, new extensions of the
Weibull distribution have been proposed by different researchers. For instance, we have the exponen-
tiated Weibull by (Mudholkar & Srivastava, 1993; Pal, Ali, & Woo, 2006), the generalized modified
Weibull by (Carrasco, Ortega, & Cordeiro, 2008), log−beta Weibull by (Ortega, Cordeiro, & Kattan,
2013), Weibull exponentiated exponential by (Salem & Selim, 2014; Usman, Shamsuddeen, Arkilla,
& Aliyu, 2020), Weibull−Burr III by (Yakubu & Doguwa, 2017), Weibull Kumaraswamy distribution
by (Ishaq, Usman, Tasiâu, Aliyu, & Idris, 2017) among others. One important assumption in survival
analysis is that each and every subject in the study population will eventually experience the event of
interest if follow-up time is large. However, due to the recent advancements in the field of medicine
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especially in the areas of new drugs and treatment regimens, many subjects have lived longer with
diseases such as cancer and heart disease. For instance, it may be observed that cohorts of patients
with certain types of cancer have been permanently cured, that is, they show no recurrence of the
disease. Those patients who are cured and are not censored are referred to as long-term survivors or
non-susceptible, while those that do not develop a recurrence of the disease are termed susceptible.
Hence, the data is said to be a mixture of these two types of subjects: susceptible subjects who
experienced the event of interest and non-susceptible subjects that will never experience the event of
interest (Maller & Zhou, 1996). Cure fraction models are used in modelling such type of data. There
are basically two types of cure fraction models: the mixture and the non-mixture cure fraction models.

The mixture cure rate model also referred to as the standard cure rate model is the most popu-
lar type of cure fraction model and was first developed by (Boag, 1949) and further developed by
(Berkson & Gage, 1952). The model was later studied extensively by different researchers including
(Achcar, Coelho-Barros, & Mazucheli, 2012; Farewell, 1986; Gamel, McLean, & Rosenberg, 1990;
Kannan, Kundu, Nair, & Tripathi, 2010; Mazucheli, Coelho-Barros, & Achcar, 2013; Meeker, 1987;
Ng & McLachlan, 1998; Peng, Dear, & Denham, 1998; Shao & Zhou, 2004; Sy & Taylor, 2000; Us-
man, Suleiman, Arkilla, & Aliyu, 2021; Usman, Shamsuddeen, Arkilla, & Yakubu, 2022) among many
others. The study population in the mixture cure rate model assumed that a certain fraction of the
population are long-term survivors or non-susceptible while the remaining fraction are susceptible to
the event of interest. The non-mixture cure rate model also referred to as the bounded cumulative
hazard model or the promotion time cure rate model was first introduced by (Yakovlev et al., 1993)
and further discussed by (Andrei, Asselain, et al., 1996; Chen, Ibrahim, & Sinha, 1999; Tsodikov,
Ibrahim, & Yakovlev, 2003). The model was motivated by the underlying biological mechanism and
was developed under the assumption that the number of cancer cells that remain active after treat-
ment follows poison distribution. Although the mixture cure rate model appears to be attractive and
is widely used, Chen et al. (1999); Uddin, Islam, and Ibrahim (2006), have identified some drawback
of the model: the model cannot have a proportional hazard structure in the presence of covariates,
the model yields an improper posterior distribution for many type of non-informative priors when co-
variates are included through the cure fraction parameter and the model does not appear to describe
the underlying biological process generating the failure time in the context of relapse where cure rate
model are frequently used.

To model the proportion of immune, different parametric and non-parametric models have been used
by different researchers. For example, the survival function of the failure time of uncured patients
was modeled by a product of a log-normal survival function and the survival function of some back-
ground distribution for the normal population by (Boag, 1949). Jones, Powles, Machin, and Sylvester
(1981) applied the exponential distribution for uncured patients in their mixture model while a sim-
ulation study for this model was carried out by (Goldman, 1984). This method was further studied
by (Ghitany & Maller, 1992). The Weibull distribution was used in modelling the failure time of un-
cured patients by different researchers such as (Farewell, 1982, 1986; Ghitany & Maller, 1992). Peng
et al. (1998) modeled the proportion of large-scale clinical trials with long follow-up of lymphoma
patients using the generalized F distribution. Other distributions used to modeled the proportion
of non-susceptible are exponentiated-weibull by (Cancho & Bolfarine, 2001), Burr XII distribution
by Shao and Zhou (2004); Coelho-Barros, Achcar, and Mazucheli (2017), exponentiated exponen-
tial distribution by (Kannan et al., 2010; Mazucheli et al., 2013), negative binomial distribution by
Cancho, Rodrigues, and Castro (2011), Weibull distribution by (Achcar et al., 2012), generalized mod-
ified Weibull distribution by (Martinez et al., 2013), Frechet distribution by (Ramos, Nascimento, &
Louzada, 2017; Kutal & Qian, 2018), Nadarajah-Haghighi distribution by (Usman et al., 2021). The
parameters of the non-mixture cure fraction model was estimated via maximum likelihood estimation
procedure considering the data to be uncensored by (Uddin, Islam, & Ibrahim, 2006). While (Uddin,
Sen, Noor, Islam, & Chowdhury, 2006) estimate the parameters of the non-mixture cure fraction
model assuming uncensored data using non-parametric maximum likelihood method of estimation.
A semi-parametric maximum likelihood estimation procedure for the non-mixture model for interval
censored time-to-event data was developed by (Liu & Shen, 2009). Classical and non-classical methods
of estimation were used to estimate the parameters of the non-mixture cure fraction model by (Lopes
& Bolfarine, 2012). Herring and Ibrahim (2002) introduced a parametric method for estimating the
parameters of the non-mixture model for a non-ignorable missing covariates.

In the present article, we introduced a non-mixture cure fraction model for survival data consider-
ing the Weibull exponentiated exponential distribution in the presence of cure fraction and censoring.
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Properties of the model were studied and applications of the model to some real life data were provided.
The rest of the paper is organized as follows: In section 2, we introduced the Weibull exponentiated
exponential distribution to the non-mixture cure fraction model. Section 3 introduces the Maximum
Likelihood Function method of estimation in estimating the parameters of the model assuming right
censoring. While statistical properties of the model were provided in section 4. Simulations study
and applications of the model were respectively provided in sections 5 and 6. We finally conclude in
section 7.

2 The Non-Mixture Cure Rate Model

In this section, an alternative to the Weibull exponentiated exponential mixture cure rate model in-
troduced by (Usman et al., 2022) called the Weibull exponentiated exponential non-mixture cure rate
model was introduce considering the Weibull exponentiated exponential distribution in the presence
of censoring.

Weibull exponentiated exponential distribution was introduced by (Salem & Selim, 2014) and later
studied extensively by (Usman et al., 2020). The distribution is an extension of the well known
Weibull distribution. The probability density function (pdf ) of the distribution was shown to take
several shapes. The graph of the hazard rate function of the distribution was shown to take various
shapes which makes it to be more flexible in modelling real life data. The pdf, cumulative distribution
function (cdf ), survival function and hazard rate function of the Weibull exponentiated exponential
distribution are respectively given as:

f (t) =
αβθφ exp (−βt)

1− (1− exp (−βt))α
[−`n {1− (1− exp (−βt))α}]θ−1

(1− exp (−βt))α−1 exp
[
−φ (−`n {1− (1− exp (−βt))α})θ

]
(1)

F (t) = 1− exp
[
−φ (−`n {1− (1− exp (−βt))α})θ

]
(2)

S (t) = exp
[
−φ (−`n {1− (1− exp (−βt))α})θ

]
(3)

and

h (t) =
αβθφ exp (−βt) (1− exp (−βt))α−1 [−`n {1− (1− exp (−βt))α}]θ−1

1− (1− exp (−βt))α
(4)

where α, β, φ and θ are positive parameters, α and φ are the shape parameters, θ and β are the scale
parameters. As earlier mentioned, the non-mixture cure rate model was motivated by the underly-
ing biological mechanism and the survival function following (Chen et al., 1999) is developed as follows:

Assume N be the number of cancer cells for a subject after treatment. Assume that the number
of cancer cells is Poisson distributed with parameter µ since the number of cancer cells may grow
rapidly and produce a detectable cancer disease. Also, let Zk denote the random time for the kth
cancer cell to produce a detectable cancer mass. Assuming Zk are independently and identically dis-
tributed (iid) with a common distribution function and survival function (F (T ) and S (T )). Assume
further, that Zk are independent of N. Then, the time to relapse of cancer is defined by the random
variable T ∈ T = min {Zk, 0 6 k 6 N}, where P (Z0 = ∞) = 1. Hence, the survival function of T is
given by:

S (t) = P (number of cancer by time t)

= P (N = 0) + P (Z1 > t, Z2 > t, . . . , ZN > t,N > 1)

= exp (−µ) +

∞∑
N=1

SN (t)
µN

N !
exp (−µ)

= exp (−µ+ µS0 (t))

= exp (−µF0 (t))

S (t) = pF0(t) (5)

where p = exp (−µ) is the proportion of non-susceptible that lies in the interval [0, 1]. The corre-
sponding cdf, pdf and hazard rate function of the non-mixture cure rate model are respectively given
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as:

F (t) = 1− pF0(t) (6)

f (t) = −`n (p) f0 (t) pF0(t) (7)

and

h (t) = −`n (p) f0 (t) (8)

where S0 (t) is the survival function for the susceptible group. Considering the WEE distribution,
the The survival function, pdf and hazard rate function for the Weibull exponentiated exponential
non-mixture cure rate model (WEENMCR) are respectively:

S (t/α, β, θ, φ) = p1−exp[−φ(−`n{1−(1−exp(−βx))α})θ] (9)

f (t/α, β, θ, φ) =
− log (p)αβθφ exp (−βx)

1− (1− exp (−βx))
α [−`n {1− (1− exp (−βx))

α}]θ−1

exp
[
−φ (−`n {1− (1− exp (−βx))

α})θ
]

(1− exp (−βx))
α−1

pexp[−φ(−`n{1−(1−exp(−βx))α})θ] (10)

and

h (t/α, β, θ, φ) =
− log (p)αβθφ exp (−βx)

1− (1− exp (−βx))
α (1− exp (−βx))

α−1

[−`n {1− (1− exp (−βx))
α}]θ−1

exp
[
−φ (−`n {1− (1− exp (−βx))

α})θ
]

(11)

where α, θ > 0 are the shape parameters, β, φ > 0 are scale parameters and p is the proportion of
non-susceptible and it lies between zero and one. The WEENMCR model as its mixture counterpart
also contains some well known non-mixture cure rate model in the literature as special case.

Sub-models of the WEENMCR Model

• when θ = φ = 1, the WEENMCR model reduces to the exponentiated exponential non-mixture
model proposed by (Mazucheli et al., 2013).

• when α = β = 1, it reduces to the Weibull non-mixture cure rate model investigated by (Achcar
et al., 2012).

• when θ = α = β = 1, it reduces to the exponential non-mixture cure rate model.

3 Maximum Likelihood Estimation and Likelihood

Ratio Test

Let ti for i = 1, 2, · · · , n be right censored survival time for the ith subject in the study population.
Assume δi be a censoring indicator such that δi = 1 if the observed lifetime ti is not censored and
δi = 0 if the observed lifetime ti is censored. Then, ti = min(Ti, δi). The likelihood function for the
WEENMCR model is obtain as:

L(Φ) =

n∏
i=1

h(ti)
δiS(ti) (12)

=

n∏
i=1

[
(− log(p))αβθφ exp (−βt)

1− (1− exp (−βt))α
(1− exp (−βx))

α−1
[−`n {1− (1− exp (−βx))

α}]θ−1

exp
[
−φ (−`n {1− (1− exp (−βx))

α})θ
]]δi

p1−exp[−φ(−`n{1−(1−exp(−βx))α})θ] (13)

The log-likelihood function is obtain by taking the natural logarithm of (13) which yields:

`(Φ) = qln(−ln(p)) + qln(α) + qln(β) + qln(θ) + qln(φ)− b
∑

δiti + (α− 1)
∑

δiln(1− e−βti)−∑
δiln(1− (1− e−βti)α) + (θ − 1)

∑
δiln

(
−ln(1− (1− e−βti)α)

)
− φ

∑
δi
(
−ln(1− (1− e−βti)α)

)θ
+

ln(p)
∑[

1− exp
(
−φ
(
−ln(1− (1− e−βti)α)

)θ)]
(14)
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differentiating (14) partially with respect to α, β, θ, φ and p and equating to zero gives the score
function as:

∂`

∂α
=
q

α
+

1

α

∑ ln(bi)

1− bi
+

(θ − 1)

α

∑ bi(1− bi)ln(bi)δi
ci

+
(θ − 1)

α

∑
bi(1− bi)ln(bi)(−ci)θ−1(δi + di)

(15)

∂`

∂β
=
q

β
−
∑

δiti + (α− 1)
∑ δitiai

1− ai
+ α

∑ δitiai(1− ai)α−1

1− bi
+ α(θ − 1)

∑ δitiai(1− ai)α−1(1− bi)
ci

+ αθφ
∑

tiai(1− ai)α−1(1− bi)(ci)θ−1(δi − di) (16)

∂`

∂θ
=
q

θ
+
∑

δiln(−ci)− φ
∑

(−ci)θln(−ci)(δi − ln(p)di) (17)

∂`

∂φ
=
q

φ
+
∑

(−ci)θ(ln(p)di − δi) (18)

∂`

∂p
=
q

p
+

1

p

∑
(1− di) (19)

where ai = eβti , bi = (1− ai)α, ci = ln(1− bi) and di = e(−φ(−ci))
θ

. However, equating (19) to zero
and solving for p yields

p̂(α, β, θ, φ) = exp

(
r∑
di − n

)
(20)

Thus, the MLE of p can be obtain algebraically using (20) while equations (15) to (18) can easily be
solved using numerical methods. Interval estimation and hypothesis testing on the parameters of the
WEENMCR model can be studied using the observed fisher information matrix I(Φ) given as:

I (Θ) = −


Iαα Iαβ Iαθ Iαφ Iαp

Iββ Iβθ Iβφ Iβp
Iθθ Iθφ Iθp

Iφφ Iφp
Ipp

 (21)

where Iαα = ∂2`
∂α2 , Iββ = ∂2`

∂β2 , Iθθ = ∂2`
∂θ2 , Iφφ = ∂2`

∂φ2 , Ipp = ∂2`
∂p2 , Iαβ = ∂2`

∂α∂β , Iαθ = ∂2`
∂α∂θ , Iαφ =

∂2`
∂α∂φ , Iαp = ∂2`

∂α∂p , Iβθ = ∂2`
∂β∂θ , Iβφ = ∂2`

∂β∂φ , Iβp = ∂2`
∂β∂p , Iθφ = ∂2`

∂θ∂φ , Iθp = ∂2`
∂θ∂p and Iφp = ∂2`

∂φ∂p . The

asymptotic distribution of
√
n
(

Θ̂−Θ
)

is multivariate normal N5

(
0, I

(
Θ̂
)−1)

, where I
(

Θ̂
)−1

is the

total observed information matrix computed at Θ̂. The diagonal elements of I (Θ)
−1

are the variances

of the corresponding parameters while the off-diagonal elements of I (Θ)
−1

are covariances. Hence,
the asymptotic 100(1− ε)% confidence interval for any of the parameters of the WEENMCR model
are respectively α±z ε

2

√
var(α), β±z ε

2

√
var(β), θ±z ε

2

√
var(θ), φ±z ε

2

√
var(φ) and p±z ε

2

√
var(p)

where z ε
2

is the 100(1− ε)% quantile from the standard normal distribution.

4 Statistical properties of the WEENMCR Model

Statistical properties such as quantile function, median, simulation, moment generating function and
moments of the WEENMCR model were discussed in this section.

4.1 Quantile Function and Simulation

The quantile function of the WEENMCR model is obtain as:

Q (u) = − 1

β
`n

1−

1− exp

−
(
− 1

φ
`n

[
`n (1− u)

`n (p)

])1/θ



1/α
 (22)

by letting u = 1 − p1−exp[−φ(−`n{1−(1−exp(−βt))α})θ], where u follows the uniform distribution with

parameters zero and one. The first, second and third quantiles of the WEENMCR model are obtain
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by substituting u = 0.25, 0.50 and 0.75 respectively in equation (22). Hence, the median of the
WEENMCR model is given by:

median = − 1

β
`n

1−

1− exp

−
(
− 1

φ
`n

[
`n (0.5)

`n (p)

])1/θ



1/α


However, the median of the WEENMCR model is zero when p takes the value of 0.5. Galton coefficient
of skewness and Moor coefficient of kurtosis can easily be obtain using the quantile function in (22)
by making the appropriate substitutions.

Simulation

Simulation study could be used to examine the performance of the Maximum Likelihood Estimation
method discussed in section 3. To generating right censored survival time data from the WEENMCR
model inverse transform method could be employed since the quantile function of the WEENMCR
model is in closed form. The following algorithm could be adopted in order to generate random sample
of size n from the introduced methodology.

1. Generate a random sample of size n ui for i = 1, 2, · · ·n from the uniform distribution. That
is, ui ∼ U(0, 1).

2. Assume p is a cure fraction parameter, return the random survival time ti =

− 1
β `n

{
1−

[
1− exp

(
−
(
− 1
φ`n( `n(1−u)`n(p) )

)) 1
θ

] 1
α

}
when ui ≤ 1− p else ti is infinity.

3. Generate the censoring times ci for i = 1, · · · , n from the WEE distribution.

4. zi = min (ti, ci) is the obtain right censored survival time.

5. The observed right censored survival data is Z = (zi, δi) for i = 1, 2, · · · , n, where δi is censoring
indicator.

4.2 Characteristic Function

Assume T is a random variable that follows the WEENMCR model with survival and pdf given
by equations (9) and (11) respectively. This pdf however, can be written in the form f (t) =
−`n (p) fu (t) exp (− (−`n (p))Fu (t)) following Ibrahim et al (2001). Applying power series expan-
sion gives:

f (t) = −`n (p) fu (t)

∞∑
j=1

(−1)
j

j!
(−`n (p))

j
Fu (t)

j

substituting equations (1) and (2) yields:

f (t) =
αβθφ (−`n (p)) exp (−βt)

1− (1− exp (−βt))α
(1− exp (−βt))α−1 [−`n {1− (1− exp (−βt))α}]θ−1

exp
[
−φ (−`n {1− (1− exp (−βt))α})θ

]
∞∑
j=1

(−1)
j

j!

{
1− exp

[
−φ (−`n {1− (1− exp (−βt))α})θ

]}j
(23)

It is clear that as t approaches zero,
{

1− exp
[
−φ (−`n {1− (1− exp (−βt))α})θ

]}j
tends to zero

and as t approaches infinity, it tends to one. Hence, applying the binomial series expansion to this
term, equation (23) becomes:

f (t) =
αβθφ exp (−βt)

1− (1− exp (−βt))α
(1− exp (−βt))α−1 [−`n {1− (1− exp (−βt))α}]θ−1

∞∑
j,k=1

(−1)
j+k

(−`n (p))
j+1

(j − k)!k!
exp

[
−φ (1 + k) (−`n {1− (1− exp (−βt))α})θ

]
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let γ = φ (j + 1) and δj,k = (−1)j+k(−`n(p))j+1

(j−k)!(j+1)! , then,

f (t) =

∞∑
j, k=0

δjkf (t/α, β, θ, γ)

where f (t/α, β, θ, γ) is the pdf of WEE distribution with parameters α, β, θ, γ. The characteristic
function of the WEENMCR model denoted by ϕX (t) is evaluated as:

ϕX (t) =

∫ ∞
−∞

eitxf (x) dx

=

∫ ∞
−∞

eitx
∞∑

j, k=0

δjkf (x/α, β, θ, γ)dx

=

∞∑
j, k=0

δjk

∫ ∞
0

eitxf (x/α, β, θ, γ)dx (24)

let

I =

∫ ∞
0

eitx
αβθγ exp (−βx)

1− (1− exp (−βx))
α [−`n {1− (1− exp (−βx))

α}]θ−1

(1− exp (−βx))
α−1

exp
[
−γ (−`n {1− (1− exp (−βx))

α})θ
]
dx (25)

let u = γ (−`n {1− (1− exp (−βx))
α})θ then

I =

∫ ∞
0

[
1−

(
1− exp

(
−(
u

γ
)

1
θ

)) 1
α

]− itβ
e−udu (26)

the series expansion of (1 − x)−q =
∑∞
l=0

(q+l−1)!
(q−1)!l! x

l. Therefore,

[
1−

(
1− exp

(
−(uγ )

1
θ

)) 1
α

]− itβ
=∑∞

l=0

( itβ +l−1)!
( itβ −1)!l!

(
1− exp

(
−(uγ )

1
θ

)) 1
α

as u tends to zero and as u tends to infinity, the limiting values

of
(

1− exp
(
−(uγ )

1
θ

)) 1
α

is between zero and one, hence applying binomial series expansion yields:

[
1−

(
1− exp

(
−(
u

γ
)

1
θ

)) 1
α

]− itβ
=

∞∑
l,m

(−1)m( lα )!( itβ + l − 1)!

( itβ − 1)!( lα −m)!l!m!
exp(−m(

u

γ
)

1
θ ) (27)

=

∞∑
l,m,n

(−1)m+n( lα )!( itβ + l − 1)!mnγ
n
θ

( itβ − 1)!( lα −m)!l!m!n!
u
n
θ (28)

substituting in (26), the integral becomes:

I =

∞∑
l,m,n

(−1)m+n( lα )!( itβ + l − 1)!mnγ
n
θ

( itβ − 1)!( lα −m)!l!m!n!

∫ ∞
0

u
n
θ e−udu (29)

and substituting (29) in (24), ϕX (t) becomes:

ϕT (x) =

∞∑
j,k,l,m,n=0

δjk
(−1)m+n( lα )!mnγ

n
θ Γ(nθ + 1)

( lα −m)!l!m!n!

(
it

β

)
l

(30)

where
(
t/β

)
l

= t/β

(
t/β + 1

)(
t/β + 2

)
· · ·
(
t/β + k − 1

)
.
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4.3 Moment Generating Function

The moment generating function mgf of the WEENMCR model denoted by MX (t) is defined by
MX (t) = E (etx). This is evaluated as:

MX (t) =

∫ ∞
−∞

etxf (x) dx

=

∫ ∞
−∞

etx
∞∑

i, j=0

δijf (x/α, β, θ, γ)dx

=

∞∑
i, j=0

δij

∫ ∞
0

etxf (x/α, β, θ, γ)dx (31)

following the same procedure as in section 4.2, the integral part is evaluated as:

∫ ∞
0

etxf (x/α, β, θ, γ) dx =

∞∑
k, l,m=0

(−1)
l+m

(
k/α

)
!lmγ

m/θΓ (m/θ + 1)(
k/α− l

)
!k!l!m!

(
t/β

)
k

(32)

where
(
t/β

)
k

= t/β

(
t/β + 1

)(
t/β + 2

)
· · ·
(
t/β + k − 1

)
. Substituting (32) in (31), the moment gen-

erating function of the WEENMCR model is derived as:

MX (t) =

∞∑
i, j, k, l,m=0

(−1)
l+m

δij

(
k/α

)
!lmγ

m/θΓ (m/θ + 1)(
k/α− l

)
!k!l!m!

(
t/β

)
k

4.4 Moments

The rth moment about the origin is easily obtain from the moment generating function using the
relation E (T r) = dr

dtr (MX (t)) |t=0. Hence,

E (T r) =

∞∑
i, j, k, l,m=0

(−1)
l+m

δij

(
k/α

)
!lmγ

m/θΓ (m/θ + 1)(
k/α− l

)
!k!l!m!

dr

dtr

((
t/b

)
k

)
|t=0

For instance, the first and second moments about the origin are obtain as follows:

E (T ) =

∞∑
i, j, k, l,m=0

(−1)
l+m

δij
(
k
α

)
!lmγ

m
θ Γ
(
m
θ + 1

)(
k
α − l

)
!k!l!m!

d

dt

((
t/b

)
k

)
|t=0 (33)

but d
dt

((
t/b

)
k

)
|t=0 = (k−1)!

b . Hence, substituting in (33), the first moment becomes:

=

∞∑
i, j, k, l,m=0

(−1)
l+m

δij

(
k/α

)
!lmγ

m/θΓ (m/θ + 1)(
k/α− l

)
!l!m!kb

(34)

on the other hand, the second moment is obtain as:

E
(
T 2
)

=

∞∑
i, j, k, l,m=0

(−1)
l+m

δij

(
k/α

)
!lmγ

m/θΓ (m/θ + 1)(
k/α− l

)
!k!l!m!

d2

dx2
(

(x/b)k
∣∣
x=0

)
(35)

but the term d2

dt2

((
t/b

)
k

∣∣∣
t=0

)
in (35) can be evaluated as: d2

dt2

((
t/b

)
k

∣∣∣
t=0

)
= 2(k−1)!

b2 (ψ (k)− ψ (1)).

Hence, substituting in (35), the second moment becomes:

E
(
T 2
)

=
2

b2

∞∑
i, j, k, l,m=0

(−1)
l+m

δij

(
k/α

)
!lmγ

m/θΓ (m/θ + 1)(
k/α− l

)
!l!m!k

(ψ (k)− ψ (1)) (36)

Equations (34) and (36) can be used in order to find the variance of the WEENMCR model using

the relation var (X) = E
(
X2
)
− (E (X))

2
.
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5 Simulation Study

In this section, simulation studies was conducted so as to ascertain the performance of the maximum
likelihood estimator of Θ = (α, β, θφ, p)′ discussed in section 3. The algorithm discussed in section
4.1 was used in generating right censored survival times.

Table 1: Maximum Likelihood, bias and standard error (SE)

n
para -
meters

a=1.5; b=2.0; θ=3.0;
φ=2.0; p=0.05

a=1.5; b=2.0; θ=3.0;
φ=2.0; p=0.10

a=1.5; b=2.0; θ=3.0;
φ=2.0; p=0.15

estim-
ates

bias SE
estim-
ates

bias SE
estim-
ates

bias SE

30 a 2.9505 1.0905 2.1459 2.6343 1.1343 2.896 2.9113 1.4113 3.1985

b 2.3951 -1.6049 0.9266 2.2513 -1.2487 1.306 2.3826 -1.6174 1.4735

θ 2.8962 1.3862 1.4916 3.153 1.4153 1.8446 3.7062 1.2762 1.9604

φ 2.9372 1.4372 3.9728 2.9822 1.4822 5.1827 3.0518 1.6518 5.2474

p 0.0529 0.0029 0.0408 0.1048 0.0048 0.0545 0.1511 0.0011 0.0633

50 a 2.2343 -1.0167 1.8075 2.2982 -1.1218 2.0291 2.5763 1.2763 2.2437

b 2.1406 -1.2994 0.932 2.1844 -1.2156 1.0383 2.3092 -1.3908 1.3546

θ 2.9838 1.2993 1.3216 3.1486 1.386 1.6923 3.4071 1.2717 1.5334

φ 2.6591 1.1591 3.1641 2.9014 1.4014 3.4856 2.9007 1.6007 4.2769

p 0.0529 0.0029 0.0316 0.1044 0.0044 0.0423 0.1515 0.0015 0.0497

75 a 1.8289 -0.9871 1.2122 1.9383 -0.9617 1.3791 2.1755 -1.0245 1.6114

b 1.8375 -1.2625 0.6114 1.9096 1.2024 0.7957 2.0974 -1.1026 0.8775

θ 3.1929 1.2929 1.2006 3.1171 1.3701 1.2759 3.3697 1.2697 1.2796

φ 2.5902 1.0902 2.8256 2.8621 1.3621 2.8527 1.7876 1.5876 3.7113

p 0.0515 0.0025 0.0255 0.1026 0.0026 0.0345 0.1516 0.0016 0.0409

100 a 1.6895 -0.9705 1.0079 1.7765 -0.9235 1.1558 1.9822 -1.0078 1.3903

b 1.8968 -1.2132 0.6108 1.9174 1.1986 0.7347 2.0233 -1.0267 0.8132

θ 3.1595 1.2595 1.1692 3.1377 1.3337 1.2704 3.1716 1.2476 1.2705

φ 2.4117 0.9117 2.644 2.6052 1.1052 2.7345 2.5063 1.5263 3.6644

p 0.0512 0.0021 0.0222 0.1026 0.0026 0.0301 0.1515 0.0015 0.0355

150 a 1.5699 -0.9301 0.7909 1.6296 -0.8704 0.9649 1.806 -0.9694 1.0846

b 1.753 -1.2047 0.476 1.9382 -1.1618 0.6365 1.8813 -1.1874 0.7064

θ 3.1298 1.2681 0.9147 3.1505 1.3205 1.0583 3.1265 1.2265 1.1225

φ 2.2931 0.7931 2.0383 2.2626 0.7626 2.0341 2.3861 1.5261 3.1747

p 0.0519 0.0019 0.0182 0.102 0.0024 0.0246 0.1508 0.0008 0.0291

200 a 1.3985 -0.9015 0.7008 1.5157 -0.7843 0.7218 1.6883 -0.8117 0.834

b 1.8494 -1.1506 0.4566 1.9585 -1.1415 0.5415 1.8942 -1.1258 0.5395

θ 3.1295 1.1395 0.8424 3.1352 1.3052 0.9344 3.1147 1.1814 0.8834

φ 2.2045 0.5045 1.665 2.1628 0.6628 1.8247 1.8466 1.3466 2.2782

p 0.0508 0.002 0.0159 0.1021 0.0021 0.0213 0.1508 0.0008 0.0251

250 a 1.4124 -0.8876 0.6706 1.4933 -0.7067 0.6705 1.6126 -0.8074 0.7504

b 1.8768 -1.1232 0.4192 1.9601 -1.1399 0.4585 1.9333 -1.1067 0.4662

θ 3.0846 1.0846 0.8056 3.1295 1.295 0.864 3.1095 1.1795 0.8456

φ 1.9864 0.4864 1.4778 2.0845 0.5845 1.461 2.2909 1.1609 1.7938

p 0.0509 0.0019 0.0141 0.1017 0.0017 0.019 0.1507 0.0007 0.0225

300 a 1.5636 -0.364 0.6441 1.4963 -0.6037 0.6234 1.5538 -0.7462 0.6454

b 1.9398 -1.0602 0.4166 1.9647 -1.1053 0.4297 1.9494 -1.0506 0.4484

θ 3.0514 1.0514 0.7157 3.1074 1.2774 0.7874 3.1076 1.1676 0.7623

φ 1.9857 0.357 1.2282 2.0275 0.4275 1.0718 2.2717 1.0717 1.0573

p 0.0506 0.0012 0.013 0.1015 0.0015 0.0174 0.1501 0.0001 0.0206
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Samples of size n = 30, 50, 75, 100, 150, 200, 250 and 300 with different proportions of cure fraction
values were generated for the parameter values α = 2.5, β = 3.0, θ = 2.0 and φ = 1.5 as the first
setting and α = 1.75, β = 2.0, θ = 1.5 and φ = 2.5 as the second setting. In each of these setting, the
cure fraction parameter takes the value p = 0.05, 0.10 and 0.15.

Table 2: Maximum Likelihood, bias and standard error (SE)

n
para-

meters
a=1.25; b=1.5; θ=2.5;

φ=2.5; p=0.05
a=1.25; b=1.5; θ=2.5;

φ=2.5; p=0.1
a=1.25; b=1.5; θ=2.5;

φ=2.5; p=0.15

estim-
ates

bias SE
estim-
ates

bias SE
estim-
ates

bias SE

30 a 1.9989 0.9489 1.7998 2.0342 0.8242 1.9156 2.3819 0.6319 1.9308

b 1.8751 0.9849 1.1941 2.1065 0.9565 1.3272 2.4368 0.4368 1.438

θ 2.3465 -1.2865 1.5477 2.4601 1.3601 1.6506 2.3806 1.6806 1.6032

φ 2.7076 0.2576 4.061 2.6126 0.1626 3.8456 2.3579 -0.1681 3.5531

p 0.0514 0.0014 0.046 0.1032 0.0032 0.06 0.1495 -0.0008 0.0694

50 a 1.6639 -0.8861 1.2628 1.6491 -0.8109 1.432 1.9073 0.5173 1.4856

b 1.6234 -0.9766 0.8516 1.9498 -0.9503 1.1499 2.1436 0.3956 1.222

θ 2.3969 1.1969 1.2088 2.5913 -1.0513 1.3782 2.4407 1.4097 1.3261

φ 2.6907 0.1907 3.3803 2.448 -0.152 2.9477 2.3855 -0.1645 2.918

p 0.051 0.001 0.0349 0.1033 0.0031 0.0459 0.1506 0.0006 0.0533

75 a 1.3818 -0.8682 1.0119 1.4314 -0.6816 1.1016 1.586 -0.4614 1.2573

b 1.4461 -0.9039 0.6709 1.7073 -0.8927 0.9369 1.976 -0.3624 1.1228

θ 2.5113 1.0113 1.0708 2.5559 1.0559 1.3548 2.475 1.0975 1.1507

φ 2.6843 0.1843 3.3502 2.6037 0.1237 2.5144 2.49 -0.1407 2.6273

p 0.0508 0.0008 0.0285 0.1018 0.0018 0.0375 0.1501 0.0004 0.0436

100 a 1.3401 -0.7099 0.8425 1.2876 -0.6424 0.8453 1.403 -0.4347 0.9767

b 1.4734 -0.8666 0.6539 1.6564 -0.7436 0.7428 1.8749 -0.3251 0.9068

θ 2.5043 1.0043 1.0395 2.5391 1.0191 1.063 2.5931 1.0231 1.1294

φ 2.4244 -0.0756 2.51 2.4832 -0.1168 2.444 2.4637 -0.1363 2.3595

p 0.0498 -0.0008 0.0247 0.1012 0.0012 0.0324 0.1504 0.0004 0.0377

150 a 1.2741 -0.6759 0.6884 1.1896 -0.5604 0.7082 1.2462 -0.3938 0.8546

b 1.5347 -0.7753 0.5352 1.5859 -0.6141 0.7142 1.7741 -0.2959 0.9036

θ 2.492 0.992 0.8984 2.5203 -0.9703 0.9616 2.5566 1.0066 1.1113

φ 2.544 0.044 2.5083 2.4194 -0.1086 1.968 2.5182 -0.1348 2.2903

p 0.0504 0.0004 0.0202 0.1014 0.001 0.0265 0.1501 0.0003 0.0309

200 a 1.2491 -0.5009 0.5038 1.1375 -0.5125 0.6152 1.1746 -0.3754 0.6459

b 1.4945 -0.7055 0.4199 1.6431 -0.5569 0.6275 1.7168 -0.2832 0.7885

θ 2.4587 0.9517 0.7242 2.5187 0.9187 0.8502 2.5706 0.9706 0.8527

φ 2.5019 0.0402 1.7973 2.5965 -0.0635 1.3769 2.5094 -0.1106 1.7401

p 0.0502 0.0003 0.0174 0.1013 0.001 0.0229 0.1502 0.0002 0.0268

250 a 1.2674 -0.4826 0.5138 1.2725 -0.4775 0.5548 1.1213 -0.3287 0.6269

b 1.5047 -0.6953 0.4185 1.6034 -0.3966 0.6323 1.733 -0.267 0.6848

θ 2.5121 0.9121 0.7175 2.5482 0.9182 0.8201 2.5817 0.9581 0.8094

φ 2.4578 -0.022 1.849 2.4371 -0.0529 1.2676 2.4976 -0.1052 1.539

p 0.05 0.0003 0.0155 0.1009 0.0009 0.0206 0.1499 -0.0001 0.0239

300 a 1.2477 -0.4023 0.4787 1.2595 -0.3905 0.4383 1.0801 -0.3099 0.4969

b 1.3935 -0.6665 0.3775 1.5204 -0.4796 0.4733 1.6988 -0.2012 0.6065

θ 2.4981 0.8981 0.6618 2.5365 0.9135 0.7538 2.5159 0.9405 0.7462

φ 2.5344 -0.0656 1.6005 2.5573 -0.0427 1.1764 2.4946 -0.0854 1.4

p 0.0508 0.0001 0.0143 0.1007 0.0007 0.0187 0.1507 0.0001 0.0219
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As mentioned in the algorithm, the censoring variable were assumed to follow the WEE suscepti-
ble distribution. The performance of the estimates were assess using bias and standard error (SE ) of
the estimates. Additionally, in this simulation settings, all results were replicated 1000 times for each
parameter setting considered.

Table 1 gives the maximum likelihood estimates together with bias and SE for the parameter set-
tings: a = 1.5, b = 2.0, θ = 3.0 and φ = 2.0. The maximum likelihood estimates for the parameter
setting: a = 1.25, b = 1.5, θ = 2.5 and φ = 2.5 were given in table 2. Bias and standard error of
the estimates were also given in this table. The bias and standard error of the estimates were found
to be small and decreases as sample size increases for all the different parameter settings. Hence,
the estimates get closer to the true parameter value as sample size increases. This indicates that the
proposed method of estimation has a good performance overall.

6 Real Data Applications

In this section, two data sets were used in illustrating the methodology of the WEENMCR model.
The first data is the melanoma data from the Eastern Cooperative Oncology Group (ECOG) phase
III clinical trial e1684 available in the smcure package in R software. The data consists of 287 patients
with high-risk melanomas who were accrued to E1684 between 1984 and 1990. The patients were
randomized to observation group or adjuvant high dose IFN (20 MU/m IV 5 days per week for 4
weeks, followed by 10 MU/m 3 days per week SC for 48 weeks) and were treated either with wide
local excision or with complete regional lymph node dissection. Two observations were deleted because
they obtained missing information. Hence, the analysis of treatment effects against observation group
was based on 285 patients who were randomized to IFN or observation group. Furthermore, one
hundred and forty (140) patients were in the observation group and one hundred and forty five (145)
patients were in the IFN treatment group.

 

Figure 1: Kaplan-Meier relapse-free survival curve

The Kaplan-Meier survival curve of this data is given in figure 1. According to (Corbière, Com-
menges, Taylor, & Joly, 2009), the presence of long-term survivors is usually suggested by the Kaplan-
Meier survival curve when the curve level-off. Hence, we observe from the Kaplan-Meier survival curve
in figure 1 that after about 8-years follow-up, some patients have not experienced any recurrence after
treatments. That is, the curve level off at a value between 0.15 and 0.2. Hence, we conclude that,
there is presence of long-term survivors in the data. The data was fitted to the WEENMCR model
and compared its performance with the fits of Weibull non-mixture cure rate WNMCR, exponentiated
exponential non-mixture cure rate EENMCR and exponential non-mixture cure rate ENMCR mod-
els. The maximum likelihood estimates of the parameters, their SE, 95% confidence interval (CI ) and
the statistics: AIC, BIC and CAIC of the fitted models were given in Table 3. From the statistics
in this table, we conclude that the WEENMCR model is more efficient compared to the WNMCR,
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EENMCR and ENMRC models, since it has the lowest AIC, BIC and CAIC values. This can also be
observed from the fits of the Kaplan-Meier survival curve overlaid with that of WEENMCR, WNMCR,
EENMCR and ENMCR survival curves shown in figure ??.

Table 3: Maximum Likelihood Estimates, SE, 95% CI, AIC, BIC and CAIC for e1684
data Non-Mixture Models

Model parameters estimate SE 95% CI AIC BIC CAIC

WEENMCR α 3.8913 0.0021 (3.8873,3.8954) 756.8194 775.0818 747.0345

β 3.8521 0.001 (3.8501,3.854)

θ 0.5403 0.0396 (0.4626,0.6179)

φ 0.3689 0.0534 (0.2642,0.4735)

p 0.2672 0.0385 (0.1917,0.3426)

WNMCR θ 0.9904 0.0577 (0.8773,1.1036) 772.4918 783.4493 766.5772

φ 0.6182 0.0613 (0.498,0.7383)

p 0.2929 0.0282 (0.2376,0.3483)

EENMCR α 1.0741 0.094 (0.8898,1.2583) 771.766 782.7235 765.8514

β 0.6700 0.0868 (0.4998,0.8402)

p 0.2911 0.0277 (0.2368,0.3454)

ENMCR β 0.621 0.0612 (0.5011,0.7408) 770.4236 777.7286 766.4662

p 0.2912 0.028 (0.2363,0.3461)

The asymptotic variance covariance matrix for the proposed WEENMCR model fitted to the
e1684 data is

α β θ φ p
α 4.29× 10−6 −8.55× 10−7 −4.21× 10−7 1.86× 10−7 −9.49× 10−8

β −8.55× 10−7 9.47× 10−7 1.17× 10−7 −1.14× 10−7 1.59× 10−8

θ −4.21× 10−7 1.17× 10−7 1.57× 10−3 4.82× 10−4 6.29× 10−4

φ 1.86× 10−7 −1.14× 10−7 4.82× 10−4 2.8× 10−3 1.43× 10−3

p −9.49× 10−8 1.59× 10−8 6.29× 10−4 1.43× 10−3 1.48× 10−3


6.0.1 Likelihood Ratio Test

Likelihood ratio test was conducted to test for the superiority of the WEENMCR model over its sub-
models at 5% significance level. The computed test statistic for the comparison between WEENMCR
model with ENMCR model, WEENMCR model with WNMCR model and WEENMCR model with
EENMCR model are respectively evaluated as:

τE = 2(−− 373.4097− (−383.2118)) = 19.6042

τW = 2(−373.4097− (−383.2459)) = 19.6724

and

τEE = 2(−373.4097− (−382.883)) = 18.9466

The summary statistics for the likelihood ratio test between the WEENMCR model and its sub-models
are shown in table 4. The p-values of ENMCR, WNMCR and EENMCR models are all significant.
This show that, the WEENMCR model is more efficient than its sub-models.

Table 4: Likelihood ratio test statistics for the test between WEENMCR and ENMCR,
WNMCR and EENMCR
Model compared with Hypothesis τ p-value

EMCR Model H0 : α = θ = φ = 1 Vs H1 : H0 is not true 19.6042 0.0002
WMCR Model H0 : α = β = 1 Vs H1 : H0 is not true 19.6724 0.0001
EEMCR Model H0 : θ = φ = 1 Vs H1 : H0 is not true 18.9466 0.0001
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6.0.2 Malaysian Colorectal Cancer Data

Colorectal cancer has been ranked the third most commonly diagnosed malignancy (Naishadham,
Lansdorp-Vogelaar, Siegel, Cokkinides, & Jemal, 2011), the second most frequent cancer in women
and the third most frequent cancer in men (Naishadham et al., 2011; Magaji, Moy, Roslani, & Law,
2014). It is also ranked the fourth leading cause of cancer related death in the world (Magaji et al.,
2014; Magaji, Moy, Roslani, & Law, 2017). Medical records of 80 patients diagnosed of colorectal can-
cer and treated by surgery and chemotherapy/radiotherapy between January 2001 and December 2010
in the University of Malaya medical center (UMMC) were obtained. The survival time was defined to
be the time from the date of commencement of treatment to death, loss to follow-up or end of the study.

Different statistical methods have been used to analyzed medical information of patients suffering
from colorectal cancer. These include: (Magaji et al., 2014) provides analysis on colorectal cancer
patients who underwent treatment in the University of Malaya Medical Centre from 2001 to 2010,
the rates of survival and its predictors among colorectal cancer patients in Malaysia was studied by
(Magaji et al., 2017), also in Malaysia, survival analysis and prognostic factors for colorectal cancer
patients was studied by (Hassan et al., 2016) while (Ghazali, 2018) modelled the survival time and
incidence for colorectal cancer patients. In Thai, (Kittrongsiri et al., 2020) assess the overall and
stage-specific colorectal cancer survival and identify the prognostic factors among the patients.

However, none of these work model colorectal cancer data using the cure fraction model. Hence,
we model this data using the WEENMCR model and compared its performance with the fits of
generalized gompertz non-mixture cure rate (GGNMCR), modified Weibull non-mixture cure rate
(MWNMCR) and generalized modified Weibull non-mixture cure rate (GMWNMCR) models.

 

 

 Figure 2: Kaplan-Meier survival curve for Colorectal Cancer patients

The Kaplan-Meier curve for the patients is given in figure 2. From these graphs, we observed that
after about 1800 days, the curve level off at a value close to 0.25. This suggest the presence of long-
term survivors in the data set as mentioned earlier according to (Corbière et al., 2009). The statistical
summaries of the fits of this data to the WEENMCR, GGNMCR, MWNMCR and GMWNMCR
models are given in table 5. The information criteria: AIC, BIC and CAIC values were also given
in this table. The information criteria values from this table showed that the WEENMCR model fits
the data better than the GGNMCR, MWNMCR and GMWNMCR models.
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Table 5: Maximum likelihood estimates for the fits on colorectal cancer data
model parameter estimate SE 95% CI AIC BIC CAIC

WEENMCR α 1.801 1.0136 (-0.1856, 3.7875) 622.743 634.6531 613.5538
β 0.0039 0.0005 (0.0029, 0.0050)
θ 0.8452 0.244 (0.3669, 1.3236)
φ 0.0674 0.0155 (0.0370, 0.0978)
p 0.0206 0.0241 (-0.0266, 0.0678)

GGNMCR β 0.0007 0.0005 (-0.0011,0.0017) 632.2858 641.8139 624.5525
λ 1.9293 0.9631 (0.0417,3.817)
ψ 0.0003 0.0007 (-0.0002,0.0018)
p 0.3011 0.1507 (0.0058,0.5965)

MWNM β 0.5249 0.0601 (0.4071,0.6428) 623.9012 633.4293 616.1679
λ 0.1285 0.0969 (0.0615,0.3184)
α 0.0005 0.0002 (0.0002,0.0009)
p 0.3368 0.1205 (0.1006,0.573)

GMWNMCR β 0.0014 0.0005 (0.0004,0.0023) 624.4096 636.3197 614.815
λ 0.4685 0.116 (0.2413,0.6958)
α 0.0095 0.0036 (0.0023,0.0166)
γ 0.2976 0.1353 (0.0325,0.5627)
p 0.5351 0.0793 (0.3797,0.6905)

7 Conclusion

In medical applications, the presence of cure fraction usually occur in the data. To model such type
of data, the cure rate models are used. In this article, a non-mixture cure rate model was introduced
using the WEE distribution. The model contain the Weibull non-mixture cure rate, exponentiated
exponential non-mixture cure rate and exponential non-mixture cure rate models as special case.
Maximum likelihood estimation method was used to estimate the parameters of the model assuming
right censoring. Simulation was conducted so as to evaluate the performance of the MLE s and it was
found that on average, the method performs well. Furthermore, the applicability of the model was
demonstrated using two real data sets. Results from the fits showed that the proposed WEENMCR
model is better than the WNMCR, EENMCR, ENMCR, GGNMCR, MWNMCR and GMWNMCR
models.
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